第8回 LPB Forum

Scriptによる LPBシミュレーション効率化

Mentor Graphics Japan Co,.LTD Board System Design Div. Kazuhiro Kadota

Mentor Graphics Simulation Tools

HyperLynx Series

- HyperLynx SI/PI
- HyperLynx DRC
- HyperLynx Thermal
- HyperLynx Analog

Thermal

Analog

- HyperLynx Advanced Solver (IE Nimbic)
 - HyperLynx Full-Wave Solver HPC(旧 nWave + nSys + 4分散)
 - HyperLynx Full-Wave Solver (IB nWaveLT)
 - HyperLynx Fast 3D Solver (IB nApex)

ポスト解析 BoardSim[®]

© 2012 Mentor Graphics Corp. Company Confidential **www.mentor.com**

New Function: HyperLynx 連携機能

■ LinSim 連携

Via モデル:ウィザードから3D解析モデルを自動生成し、解析条件設定もHLから可能

■ BoardSim 連携

PCBのカットモデルをHyperLynx Full-Wave Solver ヘダイレクトにモデル化

New Function: Xpedition VX1.2 連携

- Xpedition EEVX1.2 からダイレクトにHyperLynx Full-Wave SolverおよびHyperLynx Full-Wave Solver HPCのモデル作成が可能
- 選択したネットのRLGC抽出をHyperLynx Fast 3D SolverでダイレクトにRLGCを抽出し、DRC を行う

© 2012 Mentor Graphics Corp. Company Confidential **www.mentor.com**

IEEE2401 を用いたScriptによる解析効率化

Simulation Model

- IEEE2401 Example modelを使用
- Scriptを用いてLPBシミュレーションの効率化を行う

関連 ファイル

- G-Format : LPB2012GFMT_TOP_step9.xfl
- C-Format : LPB2012CFMT_TOP_step9.xml (PCB C)
 - :各部品 C-Format
- Spice model
- :各部品 Spice model
- Excelファイル
- :使用部品名- 部品C-Format 対比表

Script内容

- Project作成
 - G-Format Import
 - Port設定
 - Mesh設定
 - 一 解析条件設定

■ 部品設定

- ー PCB C-Formatを使用して実装されているコンデンサ・抵抗のSpiceモデルを設定
 - CAP0603
 - CAP0603B
 - CAP1608
 - CAP1608B
 - CAP1005B
 - RAS4
 - RAS8
- それぞれの部品のC-FormatはExcelファイルを参照
- それぞれの部品のC-FormatにSPICEモデルへのリンクが記載されているので、これを アサインする

- Python2.7.3 for Nimbic
 - HyperLynx Advanced Solverをインストールすると自動的にPython
 Script環境もインストールされる
 - HyperLynx Advanced Solver 各ツールのあらゆる操作を自動化可能
- openpyxl-2.3.3
 - Excel 2010 xlsx/xlsmのリード/ライト用Python Library
 - インストールするとPythonのLibraryに追加される
- VBScript
 - ー インターフェイスとしてExcelを使用するためVBScriptを使用
- Excel 2010
 - インターフェイス・部品リストとして使用

Project作成**Script**

- G-FormatのImportからPort、Mesh、Solve設定をScriptにより実行
- インターフェイス

Project Configuration					
Category	Item	Value			
Project	LPB Path	20151204_9.BoardFinalLayout			
	Import Design	LPB2012GFMT_TOP_step9_r5.xfl			
	Top C-format	LPB2012CFMT_TOP_step9_r1 xml			
	Project Name	LPB2012GFMT			
Port	Port Name	VDD15.REGULATOR			
	Net Name	VDD15			
	Pin Name	REGULATOR.6			
	Ref Net Name	DGND			
	Ref Pin Name	Name REGULATOR.7			
Mesh	Mesh Frequency	3.00E+09 Hz			
Solve	Analysis Frequency				
	Start	1.00E+06 Hz			
	Stop	3.00E+09 Hz			
	Count	400			
Create	Project Laun	ch Hyperlynx Solver			
Launch Hy	perlynx Solver after creating	the project			

- Full-Wave Solver HPCに ImportするG-Formatを指定
- PortのPinおよびReference Pinを指定
- Mesh周波数を設定
- 解析周波数条件を設定
- Create ProjectでProject作成
 LPB2012GFMT.phys

作成されたFull-Wave Solver HPC Project

Scriptで指定したProject名でProjectが作成される

部品設定Script

- 作成されたProjectに対して部品を設定
- インターフェイス

Symbol to C-format Table					
Symbol	C-format1	C-format2	🔵 C-format3 🔽		
CAP0603	B PARTS/C0603JB0J474M030BC.xml	PARTS/C0603JB1 A1 03K030BA.xml	PARTS/C0603X5R0G105M030BC.xml		
CAP0603	PARTS/C0603JB0J474M030BC.xml	PARTS/C0603JB1A103K030BA.xml	PARTS/C0603X5R0G105M030BC.xml		
CAP1608	PARTS/C1608JB0G156M080AA.xml	PARTS/C1608JB0G226M080AA.xml	PARTS/C1608JB0J106K080AB.xml		
CAP1608	B PARTS/C1608JB0G156M080AA.xml	PARTS/C1608JB0G226M080AA.xml	PARTS/C1608JB0J106K080AB.xml		
CAP1 005	B PARTS/C1005JB0G225M050BB.xml	PARTS/C1005JB0G475K050BB.xml	PARTS/C1005JB0J474K050BB.xml		
RAS4	PARTS/EXBA04E101 J.xml	PARTS/EXBA04E560J.xml	PARTS/EXBA04E560J.xml		
RAS8	PARTS/EXBA08C101 J.xml	PARTS/EXBA08C560J.xml	PARTS/EXBA08C560Jxml		
Accign Soletod Medale					
Assign Selcted Models					
🔽 Launch	Hyperlynx Solver after finishing to assign models				

- Symbol = 部品名に対応したC-Formatをリスト化
- 解析に使用する部品セットをラジオボタンで選択
- Assign Select Modelsで部品モデルを自動設定

部品設定された**Project**

指定部品にSpiceモデルが自動設定

C-Format自動作成

- 設定した部品の情報をPCB C-Formatに更新
 LPB2012CFMT_TOP_step9_r1_updated.xml を自動生成
- 変更前のPCB C-Format

<placement symbol="CAP0603B" ref_module="CAP0603B" inst="C10" x="-8584.7" y="-4104.9" mount="BOTTOM" />

■ 変更後のPCB C-Format

<placement symbol="CAP0603B" ref_module="C0603JB0J474M030BC" inst="C10" x="-8584.7" y="-4104.9"
mount="BOTTOM" />

— ref_moduleに実際に使用した部品の製品名(部品C-Formatと同名)を記述

Script Sample Set

Script Sampleの内容は以下の通り

- 📙 20151204_9.BoardFinalLayout
- local_lib
- symbol2c.xlsm
- assign_model.py
- create_project.py
- read_excel_test.py
- Scripting (iPython).vbs
-] readme.txt

- ▶ LPB フォーマットデータ・フォルダ
- openpyxl Script Library
- Excelインターフェイス
- ➤ 部品設定Script
- ➢ Project作成Script
- ➢ openpyxl-2.3.3動作確認Script
- ➤ インターフェイス用VBScript
- Read Meテキスト

Conclusion

- IEEE2401 Example modelとScriptを用いて解析作業の効率化を実施
 - ScriptによるProjectの自動生成
 - Scriptによる部品の自動設定
- 汎用性を持たせるためにExcel VBScriptでインターフェイスを作成
- 今回の作業全体を手作業で実施した場合、2時間ほどの作業時間が必要となるが、Scriptをしようすることで1分程で完了
- Excelインターフェイス とPython Scriptに他の設定項目を追加すれば、より 汎用性のある解析モデル作成から解析、レポートまでを行うツールとする ことが出来る

