

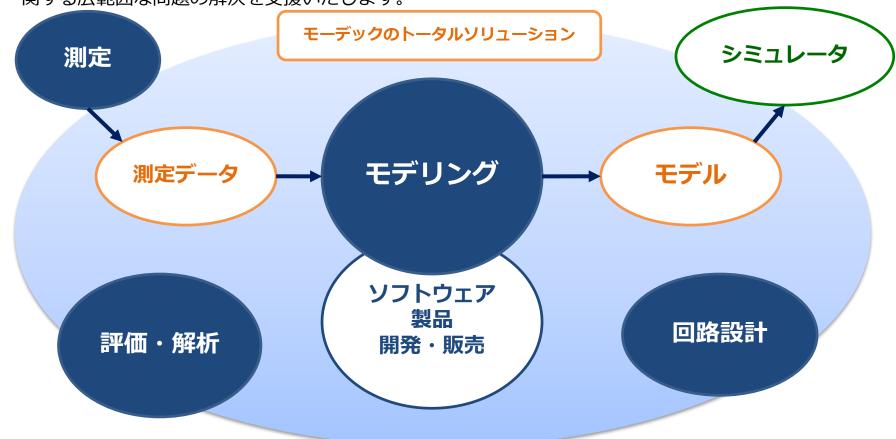
パワーデバイスのモデル標準化~パワーデバイスのシミュレーションに関する課題の抽出~

2017.3.10(金) 株式会社モーデック 西嶋哲也

アジェンダ

- 株式会社モーデック:会社紹介
- シミュレーションモデルの精度について
- 近年のパワーデバイスの特徴
- シミュレーションモデル作成時の課題
- シミュレーションに関する課題
- まとめ

株式会社モーデック:会社概要



会社名	株式会社 モーデック			
所在地	■ 本社・T&Mセンター〒192-0081 東京都八王子市横山町25-6 八王子横山町ビ■ イノベーションセンター・プロジェクトセンター〒192-0081 東京都八王子市横山町5-15 三井生命八王子			OCH sign Technology
代表者	代表取締役 嶌末政憲			
役員	常務取締役 川原康雄 取締役 鈴木康夫、末永敏男、島田寛之	イノベーションセンター	本社・T&Mセ 八王子横山町	1075
従業員	25名	三井生命八王子ビル	サンクス	南多摩高校前
設立	2002年 7月	八王子駅	国道20号級	
資本金	5,000万円		モスバーガー	西口サンクス
加入団体	 ・電子情報通信学会(IEEE) ・ (一社)日本電子デバイス産業協会 (NEDIA) ・ (社)電子情報技術産業協会 (JEITA) ・ (株)CDC研究所 ・ (独)産業技術総合研究所 NMIJ計測クラブ 	東急スクエア ・ 北I - JR八王-		中央ロラザホテル八王子
事業内容	 (1) 測定受託、測定支援、測定システム開発サービス (2) SPICE電子部品のSPICEモデル作成サービス (3) 半導体・パッシブデバイスモデリング/SPICEパラメー(4) FAB PDK検証/回路設計支援・解析・検証/ノイズ対策 (5) (1)~(4)に関連する技術コンサルティング (6) (1)~(4)に関連するソフトウェアツールの開発・販売 (7) 電気・電子・半導体分野に特化した翻訳サービス 			

株式会社モーデック:会社紹介

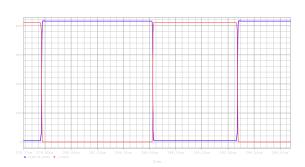
• 多くのエレクトロニクス製品メーカが、開発プロセスにおいて、フロントローディングに注力しています。効果的なフロントローディングを実現する最適なソリューションが、モデルベースシミュレーションです。モーデックでは、パワーエレクトロニクス、アナログ(RF/ミリ波)、高速デジタルなどの分野において、測定・評価・解析、モデリング、シミュレーション、回路設計、回路検証、ノイズ対策に関する広範囲な問題の解決を支援いたします。

• パワーデバイス用のモデルは、用途によって高精度の要求が高まる

- 理想スイッチモデル

ON時短絡、OFF時開放とするレベル

半導体システムモデル


- 静特性を考慮した非線形抵抗として表現するレベル
 - Diode/ BJT/ GTO/ Thyristor/ MOSFET/ JFET/ IGBT...

半導体デバイスモデル

- 動特性や熱、物理的な特性を考慮するレベル
 - Diode/ BJT/ GTO/ Thyristor/ MOSFET/ JFET/ IGBT...

SPICE互換モデル

- SPICE-3f5に互換の素子モデル
 - Diode / BJT / Lossy Tline /VC,IC switch
 - MOSFET(SPICE3 Level1-6, BSIM1~4, EKV, JFET)

パワーデバイス用のモデル動向

Compact Model:

Si-MOSFET: HiSIM-HV(高耐圧、LDMOS対応、CMC標準モデル)

IGBT: HiSIM-IGBT (HiSIMコンソーシアム会員の国内企業が使用可能)

シミュレータ独自モデル

Diode: HiSIM-Diode (HiSIMコンソーシアム会員の国内企業が使用可能)

PBT: MEXTRAM, HICUM (CMC標準モデル)

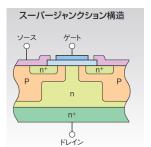
GaN-HEMT: Angelov-GaN

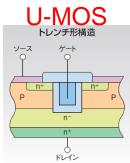
ベンダー独自モデル(X-parameter、Cardiffなど)

SPICE Macro Model:

Si-MOSFET / SiC-MOSFET:アナログビヘイビア、Level3、BSIMベースのサブサーキットモデル

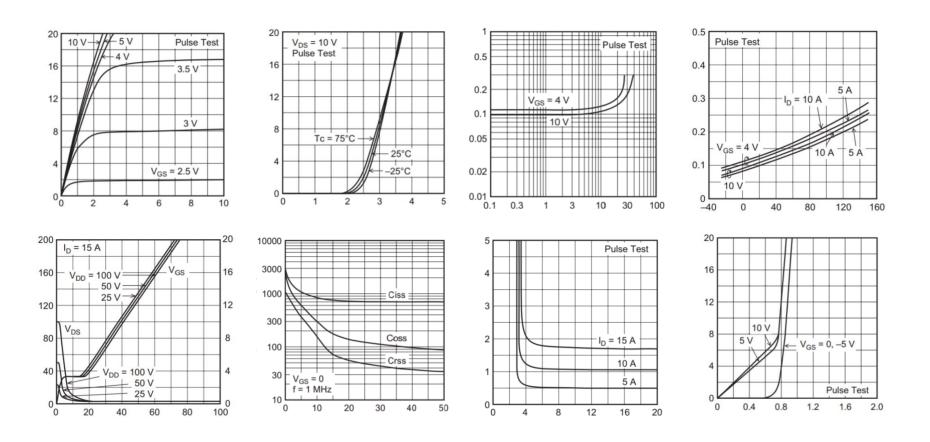
IGBT: BSIM3 (Level3) +SGP+UCB Diodeベースのサブサーキットモデル


Si-Diode / SiC-diode: UCB Diodeベースのサブサーキットモデル


IPD: アナログビヘイビアサブサーキットモデル

GaN-HEMT:アナログビヘイビア、等価回路ベースのサブサーキットモデル

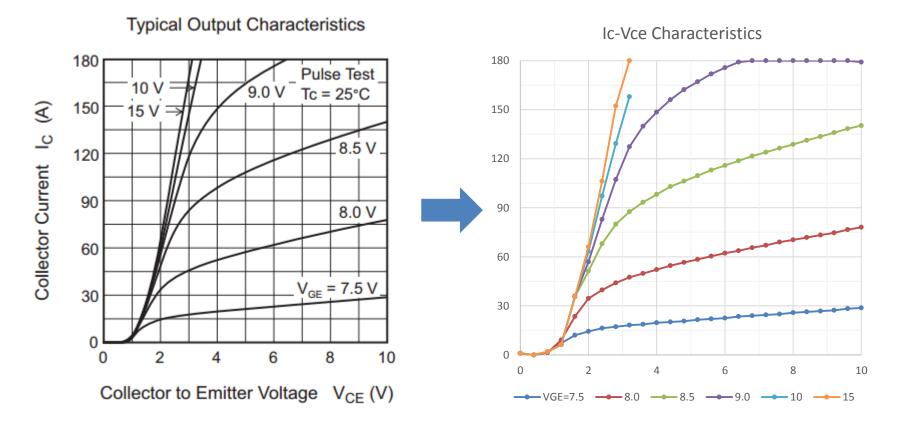
Thermal: RCベースサブサーキットモデル



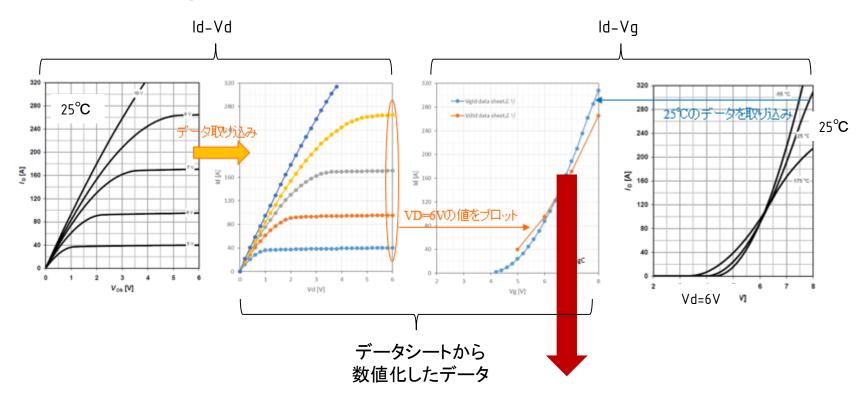
oscillation immunity

packaging parasitics

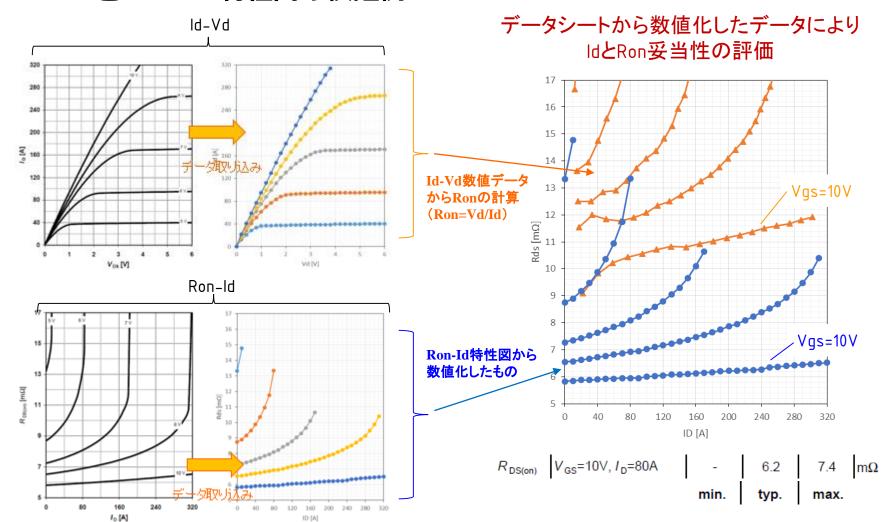
• データシートに記載されている各特性例



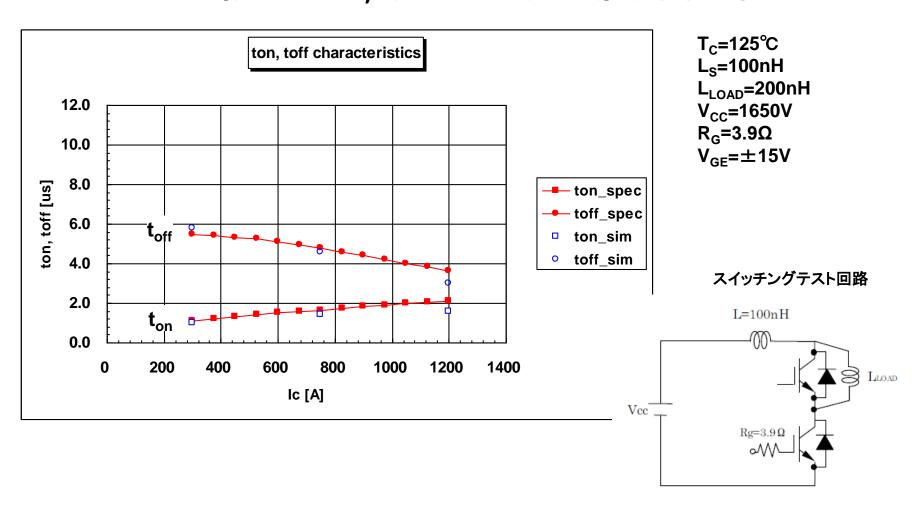
データシートからモデル作成する場合に合わないことがある?


• モデル作成の準備

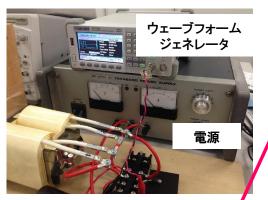
- データシート記載の特性をモデル作成のリファレンスとして数値データにする

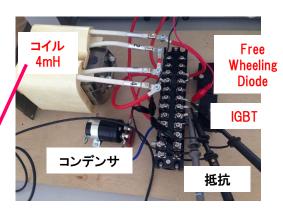

• Id-VdとId-Vg特性間の検証例

Id-Vd特性とId-Vg特性の値に不一致があり 特性間に矛盾が見受けられる

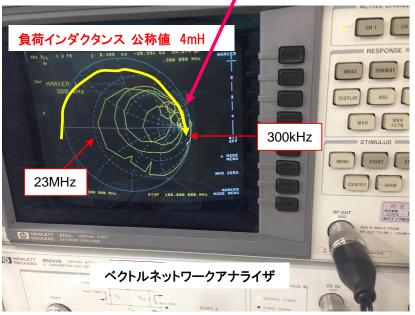


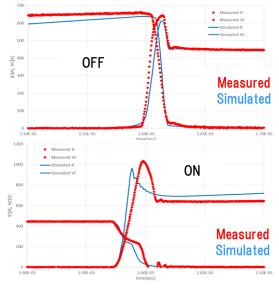
• Id-VdとRon-Id特性間の検証例

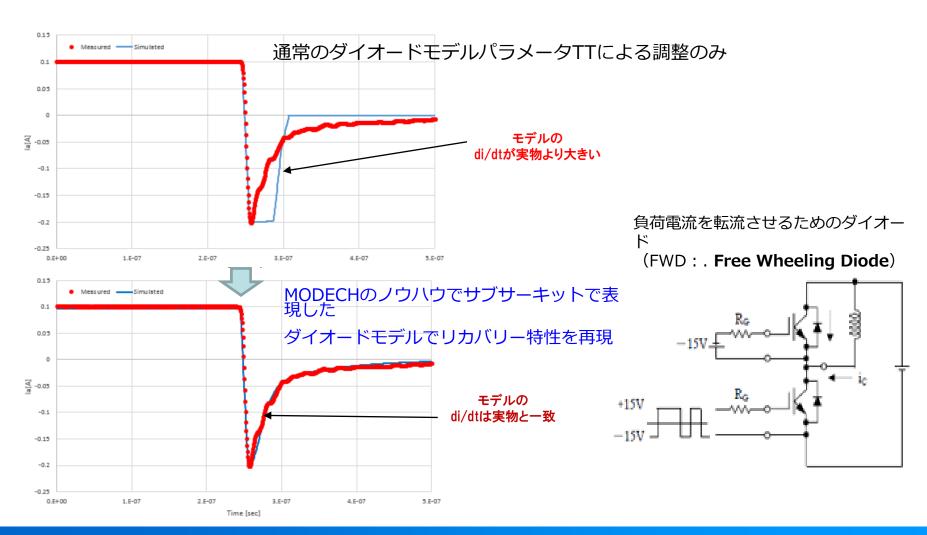

• スイッチング(ターンオン,ターンオフタイム)特性検証結果例



シミュレーションにおける課題




• スイッチング特性を実測とシミュレーション結果を検証



シミュレーションにおける課題

ダイオードのリカバリ特性の実測とシミュレーション結果検証

シミュレーションにおける課題

• 特にスイッチング特性は、実測を行うことでモデルの精度が向上

課題

- モデルの精度を上げるには、測定環境を用意し実測が必要なる。その一方で 測定工数が増えることで1デバイスあたりのモデリング費用が高くなる。
- 設計者がシミュレーション用モデルの入手性が悪く、セットメーカの費用負担が増える。
- これらの背景からシミュレーション環境構築のためのイニシャル費が増える
- シミュレーションを活用する敷居を高くし、シミュレーションの利用シーンが広がらない

課題解決のために

データシートに記載されている特性と情報を標準化することで、高精度なモデルの作成工数削減により、入手性を向上し利用シーンを増やすことが可能、

LPB-SC(MDL_WG) パワーデバイス仕様書検討TG 活動

パワーデバイス仕様書のガイドライン項目

- データシートの記載内容で着目する特性
 - 対象デバイス: Si-MOSFET / SiC-MOSFET / IGBT / GaN-HEMT
 - Ron、パルスIV特性
 - 容量特性、ゲートチャージ、駆動容量(Qgd)、Ron・Qgd性能指標
 - スイッチング特性: td(on)、tr、td(off)、tf 測定回路と条件の情報
 - ダイオード逆回復特性

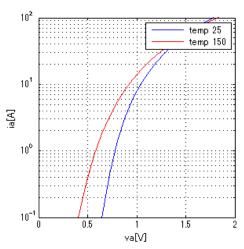
ガイドラインの要旨

- 対象デバイス(パワーMOSFET)
 - Id-Vd と Id-Vg 特性間で矛盾が無いこと
 - Id-Vd と Ron-Id 特性間で矛盾が無いこと
 - CV特性 と ゲートチャージ特性は必ず記載があること
 - スイッチング特性 (測定回路・条件、波形を明記する)
 - ダイオードの逆回復特性 (測定回路・条件、波形を明記する)

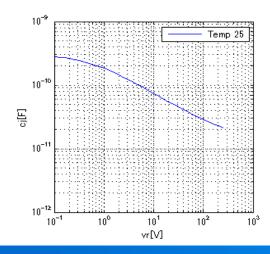
シミュレーションモデルの検証

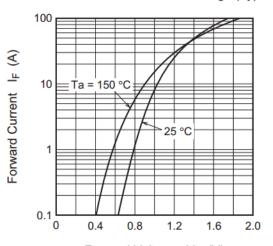
• パワーデバイスのモデリングと検証

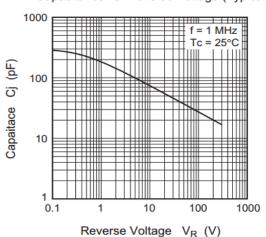
- ターゲットデバイスとデータシートについて


		•	(ENEZVZ	Data Sheet
品名	種類	概要	"745N06VUK, NP45N06PUK / - 45 A - N-channel Power MOS FET lication: Automotive	R07DS0953EJ0100 Rev.1.00 Nov 20, 2012
RJU60C6SDPQ-A0	DIODE	600V, 25A 高速リカバリダイオード	ription voducts are N-channel MOS Field Effect Transistors designed for high current switch res or low on-state resistance	ing applications.
RJS6005WDPK	DIODE	600V, 30A SiCショットキーバリアダイオード	ind = 9.6 mΩ MAX. (V _{OR} = 10 V, I _O = 23 A) τ C _{inc} C _{inc} = 1690 pF TYP. (V _{OR} = 25 V) ignal for automative application and AEC-Q101 qualified ring Information Part No. Lead Plating Packing Packing	Package
RJK5015DPK	MOSFET	Nch 500V, 25A Si高速パワースイッチ ング	Dev. C. E. A.Y * Drue Sn (Tin) Tap2 200 pheal Taping (E1 type)	TO-252 (MP-352P) TO-263 (MP-252P) Unit
NP75P04YLG	MOSFET	Pch -40V, 70A 大電流スイッチング用	Source Voltage (V _{ce} = 0 V)	V V A W
NP45N06PUK	MOSFET	Nch 60V 45A 大電流スイッチング用	own Disspation NP45N06VUK Ptz 1.2 3°C) NP45N06PUK 1.8 1.8 4 Temperature T _{th} 175 175 1 Temperature T _{th} -55 to +175 195 se Avalanche Current ** Iue 193 195 se Avalanche Current ** Iue 193 195 se Avalanche Current ** Iue 36 195	**************************************
RJP60F5DPM	IGBT	600V, 40A 高速パワースイッチング	*** **********************************	mo
RJH65T47DPQ-A0	IGBT	650V, 45A 力率改善	d to Case Thermal Resistance Reset 1 to Ambient Thermal Resistance Reset NP45N08VUK 125 *C/W NP45N08PUK 83.3 *C/W	

RENESAS

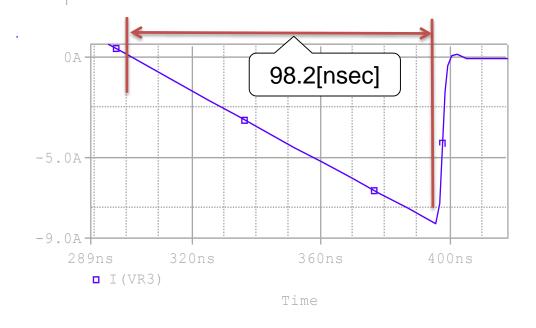

モデリング結果: RJU60C6SDPQ


順方向特性(IF-VF)

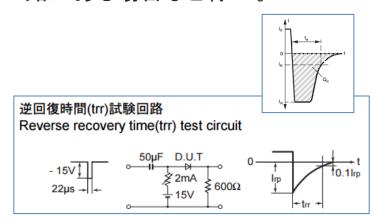

• 容量特性

 $\label{eq:continuous} \mbox{Forward Voltage} \quad \mbox{V}_{\mbox{F}} \mbox{ (V)} \\ \mbox{Capacitance vs. Reverse Voltage (Typical)} \\$

モデリング結果: RJU60C6SDPQ


• 逆回復時間特性

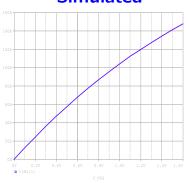
Electrical Characteristics

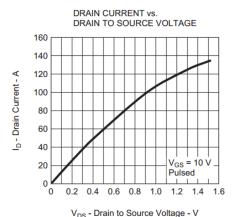

このデータシートには測 定回路の記載なし

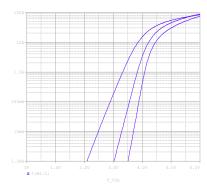
 $(Ta = 25^{\circ}C)$

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Forward Voltage	VF	_	1.4	2.0	V	I _F = 50 A
Reverse current	IR	_	_	25	μΑ	V _R = 600 V
Reverse Recovery Time	trr	_	100	_	ns	I _F = 30 A, di/dt = -100 A/μs

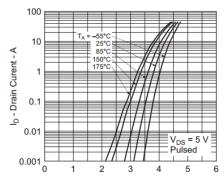
ダイオードの逆回復時間の評価 方法には、IF-IR測定や、di/dt法 と併せてデータシートに試験回 路がある場合など様々。

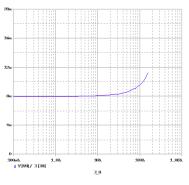


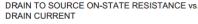

モデリング結果: NP45N06PUK

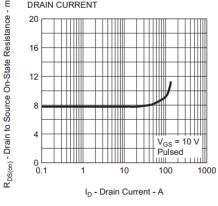

Id-Vds,Id-Vgs特性

Simulated

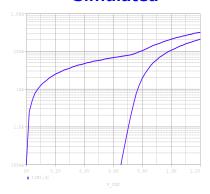


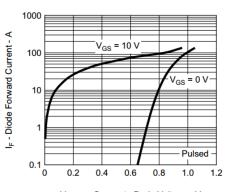





VGS - Gate to Source Voltage - V

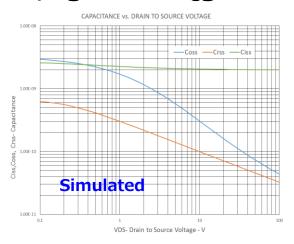
Rds(on),If-Vsd特性


Simulated

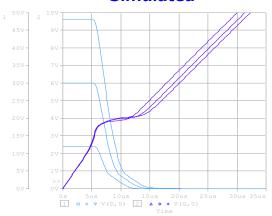


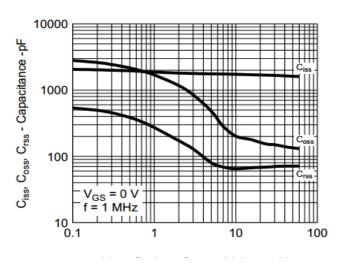
Simulated

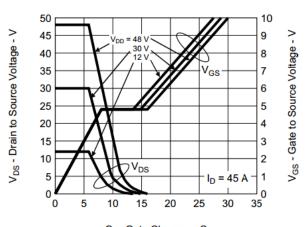
SOURCE TO DRAIN DIODE FORWARD VOLTAGE



V_{F(S-D)} - Source to Drain Voltage - V

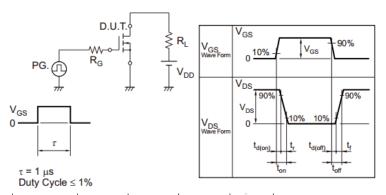

モデリング結果: NP45N06PUK


C-Vds,Vgs/Vds-Qg特性

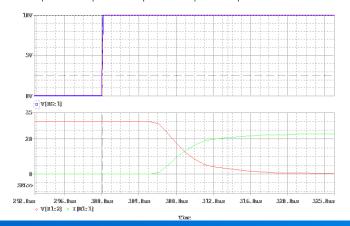

Simulated

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE

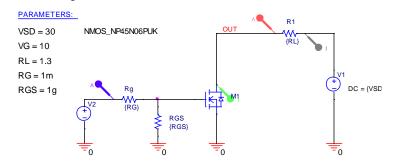
DYNAMIC INPUT/OUTPUT CHARACTERISTICS

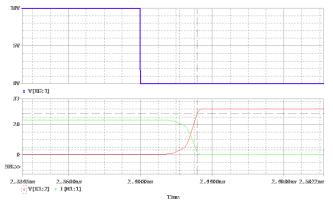


モデリング結果: NP45N06PUK



• スイッチング波形の妥当性が確認できない


TEST CIRCUIT 2 SWITCHING TIME


$t_{d(on)}$	-	15	40	ns	$V_{DD} = 30 \text{ V}, I_D = 23 \text{ A}$
t_r		5	20	ns	V _{GS} = 10 V
t _{d(off)}	_	37	80	ns	$R_G = 0 \Omega$
t _f	-	3	10	ns	

Switching characteristics

	データシート	Simulated
td(on)	15ns	6.4ns
tr(on)	5ns	23.9ns
td(off)	37ns	2.82ns
tf(off)	3ns	24ns

パワーデバイスに関する規格調査

• IEC規格の調査

- パワー半導体関連のIEC規格情報について、SC47E/WG3国内委員会より、以下の情報を入手
 - IEC 60747-2 Rectifier diodes
 - IEC 60747-3 Signal, switching and regulator diodes
 - IEC 60747-6 Thyristors
 - IEC 60747-7 Bipolar transistors
 - IEC 60747-8 Field-effect transistors
 - IEC 60747-9 Insulated-gate bipolar transistors (IGBTs)
 - IEC 60747-15 Isolated power semiconductor devices
- IEC規格内には、パワー半導体の測定に関する規定がありそう

Measuring methods

- 1 General
- 2 Alternative methods of measurement
- 3 Measurement accuracy
- 4 Protection of devices and measuring equipment
- 5 Thermal conditions for measuring methods
- 6 Accuracy of measuring circuits

まとめ

- 現状のパワーデバイス用のモデリング精度を確認
- データシートの記載内容に不一致例を確認
- ガイドラインの要旨をリストアップした
- 各デバイスのIEC60747企画の内容確認が必要
 - (Ron、パルスIV特性、容量特性、ゲートチャージ特性、スイッチング特性、ダイオード逆回復特性)

今後の活動

- IEC 60747-8 (MOSFET)記載内容とモデルの精度の因果関係を調査
- データシート記載で追加情報の新たなガイドライが必要であれば継続検討する(JEITA規格にするかどうか)
- デバイスメーカ様の協力を得て、モデルの精度実現に貢献
- パワーデバイスモデリング技術セミナー

